Molecular dynamics studies of ion permeation in VDAC.

نویسندگان

  • Huan Rui
  • Kyu Il Lee
  • Richard W Pastor
  • Wonpil Im
چکیده

The voltage-dependent anion channel (VDAC) in the outer membrane of mitochondria serves an essential role in the transport of metabolites and electrolytes between the cell matrix and mitochondria. To examine its structure, dynamics, and the mechanisms underlying its electrophysiological properties, we performed a total of 1.77 μs molecular dynamics simulations of human VDAC isoform 1 in DOPE/DOPC mixed bilayers in 1 M KCl solution with transmembrane potentials of 0, ±25, ±50, ±75, and ±100 mV. The calculated conductance and ion selectivity are in good agreement with the experimental measurements. In addition, ion density distributions inside the channel reveal possible pathways for different ion species. Based on these observations, a mechanism underlying the anion selectivity is proposed; both ion species are transported across the channel, but the rate for K(+) is smaller than that for Cl(-) because of the attractive interactions between K(+) and residues on the channel wall. This difference leads to the anion selectivity of VDAC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study

The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecula...

متن کامل

Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combina...

متن کامل

Brownian dynamics simulations of ion transport through the VDAC.

It is important to gain a physical understanding of ion transport through the voltage-dependent anion channel (VDAC) because this channel provides primary permeation pathways for metabolites and electrolytes between the cytosol and mitochondria. We performed grand canonical Monte Carlo/Brownian dynamics (GCMC/BD) simulations to explore the ion transport properties of human VDAC isoform 1 (hVDAC...

متن کامل

ABSTRACT Title of dissertation: MITOCHONDRIAL VDAC AND BACTERIAL PORA/C1: ION PERMEATION AND SELECTIVITY

Title of dissertation: MITOCHONDRIAL VDAC AND BACTERIAL PORA/C1: ION PERMEATION AND SELECTIVITY Alexander G. Komarov, Doctor of Philosophy, 2005 Dissertation directed by: Professor Marco Colombini Department of Biology VDAC and PorA/C1 are large diameter channels with properties reminiscent of those found in narrow channels. VDAC, located in the mitochondrial outer membrane, shows high selectiv...

متن کامل

Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC).

Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2011